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Probability Distribution of Photocounts  of  the 
Light Scattered by Critical Fluctuations 
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The probability distribution of photocounts P(n, T) of the light scattered by 
concentration fluctuations in a binary system near the critical point has been 
measured. The results turn out to be consistent with the theoretical predictions 
for Gaussian-Lorentzian light. 
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The technique of intensity correlation spectroscopy has been one of the 
most important tools to study time-dependent hydrodynamic fluctuations 
in fluids. In particular when close to a critical point this method allows to 
measure with a high precision the decay rate of the order parameter whose 
fluctuations decay very slowly in time. However, a crucial assumption for 
the applicability of the technique is that the scattered electric field Es(t ) be 
a Gaussian random process. In this case (1'2) a factorization condition, 
known as the Siegert relation, is valid, i.e., 

g(2)(t) = l + I g(~(t) l  2 (1) 

where g(1)(t) and g(2/(t) are given by 

g(l)(t) = (Es(t)E ~ (0)) (IE~(O)121Es(t)l 2) 
(iEs(0)[=) , g<2~(t) = (iEs(0)12) ~ (2) 
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This Gaussian assumption is, however, only a sufficient condition for the 
validity of the factorization condition (1) which is fundamental to the 
photon correlation spectroscopy. We have previously shown (3~ that (1) can 
result from a less restricted condition. We will consider here the case of 
scattering of laser light from a two-component liquid mixture near the 
consolute point. In this case the order parameter is the concentration of one 
of the components and Es(t ) is proportional to its Fourier component of 
wave number q, the scattering vector, c(q, t). g(l~(t) and ~(z)(t) can then be 
written directly in terms of c(q, t) as 

(It(q, 0)12Lo(q, 012) 
g(2~(t) = (3) 

(Ic(q,0)12) 2 

g(l~(t) = <c*(q,O)c(q,t)) 
(ic(q,O)[2) (4) 

regardless of the phase fluctuations of the laser beam. In fact Mandel (4) has 
shown that the scattered field Es(t ) is necessarily non-Gaussian if one takes 
into account the phase fluctuations of laser light. However, we have shown 
that relation (1) still holds for g(2~(t) and g(l~(t) as given by (3) and (4) if 
the concentration fluctuations c(q, t) obeys linearized hydrodynamics equa- 
tions. This is the case for a dilute Brownian particle suspension and for 
binary liquid mixture away from the critical point. However, very near the 
critical point, c(q, t) no longer obeys the linearized hydrodynamic equations 
and is expected to become a non-Gaussian process from Landau-  
Ginzburg-Wilson theory. (5) However, due to the fact that the scattering 
volume V is generally much larger than 4 3, the correlation range of the 
fluctuations cubed, in a realistic experimental arrangement, it turns out that 
this non-Gaussian correction is too small to be observable. (3) For example 
in our experiment V~----(10 -3 cm) 3 and ~3~(5  • 10 -5 cm) 3 at 3 mK from 
the critical point. Thus it is reasonably sure that (1) is always valid in 
practically any experimental condition and the non-Gaussian nature of 
Es(t ) does not enter into discussion in a scattering experiment. 

The situation, however, is different in a photon statistics measurement, 
since the photocount distribution depends not only on the two-time correla- 
tion functions such as (3) and (4) but also on all multitime correlation 
functions. (3~ Thus, a statement of factorization condition for the two-time 
correlation function is not sufficient to characterize photon statistics. Mea- 
surements of photon statistics near the critical point therefore test a 
conjecture that one can effectively regard c(q,t) as a Gaussian random 
process (through its implication of being a condition limiting all its multi- 
time correlation functions) in a realizable experimental condition. 

We constructed a sampling circuitry, working in connection with a 
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multichannel analyzer operating in pulse height analysis mode to measure 
P(n, T) the probability of counting n photoelectrons during a sampling 
t imeT,  f o r 0 < n < 2 5 6 a n d 1 0 # s < T < 1 0 m s .  

As was shown by Mandel, (6) the probability density P(n, T; t) of 
counting n photoelectrons in the time interval t, t + T is given by 

<[ t)] "exp[ - t)]> (5) e(n, T; 0 = -yf 

where a is the quantum efficiency of the phototube and u(T,t) is the 
integrated intensity of the light whose instantaneous intensity is I(t): 

u(T,t) =~t+ ~dt'l(t') (6) 

The angular bracket in Eq. (5) indicates an ensemble average to be taken 
with respect to u. In what follows we shall assume that the radiation field 
is stationary and ergodic and then P(n, T; t) is independent of the time 
origin t. 

Let us consider first the case of a stabilized single-mode laser operating 
well above threshold. It can be shown (y) that to a first approximation the 
instantaneous intensity I(t) is a constant I for a sampling time of practical 
interest. Therefore u(T) = IT and P(n, T) is given by a Poisson distribu- 
tion s 

1 (n>"exp[ - <n> ] (7) T )  = 

where (n> is the mean number of counts per sampling period T, i.e., 
(n> = ~IT. Figure 1 shows the results obtained with the light emitted from 
single mode intensity stabilized He-Ne  laser. The data obtained for various 
sampling time T agree very well with formula (7). 

On the other hand we can consider a "white" source obtained from 
light whose spectral distribution is very broad. In this case the practical 
sampling time T is always by far greater than the coherence time of the 
source. All the fluctuations of intensity are then smoothed out in the 
duration of sampling and the integrated intensity is practically a constant 
(u>. As in the previous case we also obtain a Poisson distribution for 
P(n, T) although for a rather different reason. This is very well supported 
by our data plotted in Figure 2. 

In the case of the light scattered by a dilute solution of polystyrene 
spheres we are dealing with a bandwidth-limited field. Indeed the coher- 
ence time of this source is the decay time 6 of Van Hove correlation 
function expressing the probability of finding a particle located at position 

SMore sophisticated expressions have already been used by various authors; see Ref. 8. 
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Fig. 1. Laser light: Probability distribution P(n, T) (arbitrary units) vs n number of photo- 
electrons for different values of the sampling time T. V: T=  40 s; 0 :  T=  100 s; [--1: T= 
200 s; A: T= 400 s; 0: T= 800 s; IB: T= 1600 s; e: T= 3200 s; &: T=  6400 s. The solid 
lines are calculated values according to Poisson distribution (counting rate: 7200 _+ 300 c s-  l). 

r a t  t ime t given tha t  the par t ic le  was at  the origin at  t = 0. F r o m  classical  
h y d r o d y n a m i c s  it can  be  shown (9) tha t  for a par t ic le  undergo ing  Brownian  
mo t ion  this corre la t ion  funct ion  is an  exponent ia l  whose decay  t ime is 
t c = 1 / D q  2, D being  the S tokes -E ins t e in  t rans la t iona l  d i f fus ion coefficient  
and  q the t ransfer  wave  vector.  Since the  n u m b e r  of i ndependen t  scat terers  
is usual ly  large in the scat ter ing vo lume the sca t tered  field is Gauss ian ,  (~~ 
accord ing  to the centra l  l imit  theorem.  In  this case (Gauss i an  l ight  with 
Loren tz ian  spectral  d is t r ibut ion)  Beda rd  (H) has  shown tha t  the p robab i l i t y  
densi ty  P(n,  T)  can be ca lcu la ted  for each value  of T by  a recurrence  
rela t ion:  

n-1 (_ l ) .+k+l  
e(.,r)=k=0E [D._k(s)].=le(.,r ) (8) 
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Fig. 2. White source: Probability distribution P(n, T) (arbitrary units) vs n for different 
values of the sampling time T. Q): T=  10 s; A: T=  20 s; D: T=  40 s; V: T= 80 s; V: 
T = 160 s; 0:  T = 320 s; A: T = 640 s. The solid lines are calculated values according to 
Poisson distribution (counting rate 4800 _+ 100 c s-  i). 

D~(x) being  a compl i ca t ed  funct ion  involving modi f i ed  spher ica l  Bessel 
funct ions.  The  exact  formula ,  (8), is ra ther  diff icult  to hand le  bu t  approx i -  
ma te  expressions have  been  proposed .  (6'12) A m o n g  these G l a u b e r ' s  (~2) 
a sympto t i c  fo rmula  is val id  only  for  T >> t C. On  the o ther  h a n d  M a n d e l  (6) 
p r o p o s e d  a genera l iza t ion  of Bose -E ins t e in  d is t r ibu t ion  descr ib ing  the 
f luctuat ions  of n Boson in s cells of phase  space.  The  resul tant  expression 
for  P(n, T) is 

r(n  + s) 1 
e(n ,T)  " n!V(s) (1 + (n)/s)~(1 + s/(n))" (9) 

where  F (x )  is the G a m m a  funct ion  and  

S u r 2 / 2  ~_Tdt ( r  - t)l g(1)(t)[2. 
,.,,o 
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For the cases of Brownian particles and the critical mixture, 

2t , g(b(g)la = expl - -~- ] 

where t c is the correlation time and 

u {  , )-1 
s = ~  l + u [ e X p ( - u ) - I  1 

with u = 2 T ~  t C . The accuracy of the above formula (9) has been tested by 
Bedard et  al .  (~3) and was found to be a very good approximation to 
P ( n ,  T ) .  Equation (9) was used by Pearl and Troup (14) to interpret their 
experiments on scattering of laser light by a rotating ground glass disk. 
However, before we can test how well formula (9) fits our data we have to 
account for dead time corrections (iS) and effects due to spatial coherence 
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Fig. 3. Polystyrene latex in methanol. Probability distribution P(n, T) vs n for various values 

of sampling time T. O :  T =  40 s; z~: T =  100 s; 71: T =  200 s; V:  T = 400 s; I :  T =  800 s; 
Q: T =  1600 s; A:  T =  3200 s. Solid lines: theoretical calculations according to Bedard 
formula [Eq. (23)]; counting rate 8000 + 200 e s - i ) ;  correlation time t c = (3.30 + 0 .05)x  
10 -3 s, 
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of the field received on the phototube. (16) In order to minimize these 
distortions, the counting rate was set very low compared to the inverse of 
the dead time of the counter (100 MHz) and less than one coherence areas 
was subtended on the detector. 

In Figs. 3 and 4 a quantity proportional to P(n, T) is plotted as a 
function of n for various values of the sampling time T. The ratio T/ t  c 
ranges from 1 to 10. Two systems have been studied, a dilute solution of 

10 6 

10 s 

10 4 

o10 3 

0 
g 102 

10 

1 

I I I I I I 
0 10 20 30 40 50 

NUMBER OF PHOTOELECTRONS 
6O 

Fig. 4. Cri t ical  compos i t ion  n i t robenzene  n-hexane  mix tu re  a few mil l idegrees  above  T c . 
Probabi l i ty  d is t r ibu t ion  P(n, T) vs n for var ious  values  of the sampl ing  t ime T. t :  T = 40 s; 

O :  T = 8 0 s ;  A :  T = 1 6 0  s; [~]: T = 3 4 0 s ;  .: T = 6 4 0 s ; I B :  T = 1 2 8 0 s ;  i :  T = 2 5 6 0 s ;  V :  
T = 4000 s; ~ ' :  T = 8000 s. Solid lines: Theore t ica l  ca lcu la t ions  accord ing  to Bedard  formula  
[Eq. (23)]; coun t ing  rate  2500 _+ 50 c s - i ;  corre la t ion  t ime t C = (1.30 + 0.01) x 10 -3  s. 



706 Chen et al. 

Brownian polystyrene spheres and a critical sample of nitrobenzene-n- 
hexane 3 millidegrees above the consolute temperature. The overall appear- 
ance of the two graphs is quite similar. For small values of Ti t  C, P(n, T) 
decays exponentially (note the semilog scale of Figs. 2 and 3) whereas for 
T/ t  c > 1 P(n, T) shows a maximum and then, for large values of n, decays 
almost exponentially. 

Comparison between experiment and theory [Eq. (9)] needs only one 
adjustable parameter, the amplitude of P(n, T) for a given value of n. For 
simplicity, the maximum value of P(n, T) has been chosen to obtain the 
value of the parameter. Theoretical curves are plotted as solid lines on Figs. 
3 and 4. Agreement between experiment and theory is very good for 
T~ t c < 1 whereas small discrepancies are observed for T/tc > 1 for low 
values of n. However, the overall behavior of the theoretical curves is quite 
satisfactory. 

For T/tc > 1 a very good agreement between experiment and theory 
can be achieved if we assume s and n as free parameters. The values we 
obtain from the fits differ by about + 10% from those inferred from our 
experimental conditions. 

Small deviations from Eq. (9) are to be expected since we know that it 
is only approximate and valid in the two limits T/t~ << 1 and T/t~ >> 1. 
Furthermore, the Gaussian spatial distribution of the incoming laser beam 
has to be taken into account. (17) This might lead to corrections of the order 
of the observed differences. We may therefore conclude, in the light of the 
above results, that the field scattered by a critical mixture even very close to 
T~ [in our case ( T -  T~)/T c < 10 -5] behaves exactly like the one from a 
polystyrene sample. For both fields the probability distribution is very well 
accounted for by Mandel formula (9) for a Gaussian-Lorentzian source. 
This means that even at a few millidegrees above the critical temperature, 
the critical fluctuation can be regarded as a Gaussian random process. 

We finally note that Beysens et al. (18) investigated the same critical 
mixture and measured the distribution of the integrated intensity which 
turns out to be exponential, in full agreement with our results. 
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